NUCLEAR ENGINE SYSTEM SIMULATION (NESS) VERSION 2.0

- OVERVIEW -

22 JANUARY 1992

PRESENTED BY:

Dennis G. Pelaccio and Christine M. Scheil Science Applications International Corporation Albuquerque, NM 87123 And

Lyman J. Petrosky
Westingliouse Electric Corporation
Madison, PA 15663

PRESENTED AT:

1992 Nuclear Propulsion - Technical Interchange Meeting NASA Lewis Research Center Sandusky, OH

(W

TOPICS

- BACKGROUND
- FEATURES
- COMPARISONS
- CONCLUDING REMARKS

BACKGROUND

NUCLEAR THERMAL PROPULSION (NTP) ENGINE SYSTEM ANALYSIS PROGRAM DEVELOPMENT - Overall Objective -

- Develop a Stand-alone, Versatile NTP Engine System
 Preliminary Design Analysis Program (Tool) to Support Ongoing and Future
 SEI Engine System and Vehicle Design Efforts
 - Perform Meaningful (Accurate), Preliminary Design Analysis Tank to Nozzle
 - Have Flexibility:
 - -- To Handle a Wide Range of Design Options to Support Preliminary Design Activities
 - -- To Be Easily Upgraded in Terms of Analysis Capability
 - Be Available to the SEI Community, Possibly as an Industry Standard
 - Be Done Promptly and Efficiently
 - Initial Effort:
 - Focused on NERVA/NERVA Derivative, Solid-Core NTP Systems
 - -- Based on Upgrading SAIC's N'I'T BLES Design Code by Incorporating Westinghouse's ENABLER Reactor and Internal Shield Models

W

NUCLEAR THERMAL PROPULSION (NTP) ENGINE SYSTEM ANALYSIS PROGRAM DEVELOPMENT - Observations -

- No NTP-Specific Code is Commonly Available for Use in SEI Propulsion and Vehicle Design Studies
 - Versatile, Verified NTP Analysis Design Tool Could Be of Great Use to the Community
- It Is Envisioned That NESS Is One Key Element in Developing a Robust (Industry Standard Type) Analysis Capability (Design Workstation) to Support NTP Development Into the 21st Century
 - Enhancements in Terms of Additional Technology/Design Options and/or Analysis Capabilities Possible With the NTP ELES Model

W

TEAM RESOURCES USED TO SUPPORT NESS DEVELOPMENT

EXPANDED LIQUID ENGINE SIMULATION (ELES) COMPUTER MODEL

- Background -

- Its Major Objective is to Conduct Preliminary System Design Analysis of Liquid Rocket Systems and Vehicles
- Delivered by Aerojet in the Early 1980's (1981-1984) Under Sponsorship by the Air Force Rocket Propulsion Laboratory (Now Phillips Laboratory)
 - Over \$1.2 Million Spent by the Air Force in Its Development
 - Available Through the Air Porce
- ELES Has Been Well Distributed and Accepted Within the Propulsion Community for Preliminary Liquid Propulsion System Design Analysis
- ELES Draws on Past Experience and Knowledge From Aerojet and Others
 - Encompasses Aerojet Vast Engineering Base and Expertise in Liquid Propulsion
 - In-house Experience Included in the Model
 - Has Legacy to Experts Active in the Community

EXPANDED LIQUID ENGINE SIMULATION (ELES) COMPUTER MODEL (Cont.)

- Background -

- ELES Model Uses Mechanistic as Well as Empirical Models of Components/Subsystems
- The Model is Well Structured, User Friendly, Easily Modified, and Documented
- A High Degree of Verification has Been Done on the ELES Code
 - ELFS Is a Comprehensive Industry Type, Standard Code Available to Perform Preliminary Steady-State Liquid Propulsion Design Analysis
 - A key Starting Point in Initial NTP Engine System Development

ELES VERIFICATION EXAMPLES

- N-II DELTA (DELTA 2ND STAGE)
 TRANSTAR (1ITAN 3RD STAGE)
 CENTAUR/RL-10 DT-1 STAGE
 SPACE SHUTTLE MAIN ENGINE

CENTAURVIL-10 D1-T VERIFICATION SUMMARY					
	ACTUAL CAL		ACTUAL/CALC		
Turbino Pressure Ratio	1.337	1.299	1.029		
Regen Jechel &T	416	903	0.83		
Ox Purry Outlet Pressure	507	804	0.90		
Fuel Pump Outlet Pressure	990	954	1.04		
Engine System	605	634.9	1.05		
IPA Weight	76 I	80 G	0.94		
Stage Dry Weight	4046	3952	1.02		
Stage Burnout Weight	4002	4364	1.05		
Stage Length	360	357 3	1.01		
Engine Performance	444	444.6	1.00		

GENERAL NTP ENGINE SYSTEM FEATURES MODELED BY NESS

- Incorporates a Near-Term Solid-Core NERVA/ NERVA-Derivative Reactor Designs
 - Westinghouse ENABLER I&H NTP Reactor Designs
 - Strong Westinghouse R-1 Reactor Design Legacy
- Incorporates State-of-the-Art Propulsion System Technologies and Design Practices

W

15

NTP: Systems Modeling

REACTOR FUELD AND SUPPORT ELEMENT PARAMETERS

Fuel Element Composition	Graphite	Composite	Carbide
Temperature Range (*K)	2200-2500	2500-2900	2900-3300
Fuel	Coated Particle	UC , ZrC Solid Solution and Carbon	(U,Zr) C Solid Solution
Coating	ZrC	ZrC	
Unfueled Support Element Composition	Graphite	ZrC-Graphite Composite	ZrC
Unfueled Element Coating	ZrC	ZrC	

REACTOR PARAMETERS AS A FUNCTION OF THRUST LEVEL

Thrust (lbf)	15,000	25,000	>50,000
Reactor Power Range	275-400	460-670	920-6700
Fuel and Support Element Length (inch)	35	35	52
Pressure Vessel Length (inch)	82.6	84	101.6
Fuel Element Power (MW)	0.629	0.808	1.20
Relative Fuel Element Power Density	0.778	1.0	1.0
Ratio of Fuet Elements (N) to Support Elements	2:1	3:1	6:1

INTERNAL SHIELD SIZING

- Sized to Meet Radiation Leakage Requirements Established for the NERVA Program
- · Radiation Leakage Limits at a Plane 63 Inches Forward of the Core Center

Type of Radiation	Radiation Leakage Limits Within Pressure Vessel Outside Radius
Gamma Carbon KERMA Rate	1.8 x 10 ⁷ Rad(c)/hr
Fast Neutron Flux	2.0 x 10 ¹² n/cm ^{2-sec}
Intermediate Neutron Flux	3.0 x 10 ¹² n/cm ² -sec, 0.4 eV ≤ En ≤ 1.0 MeV
Thermal Neutron Flux	6.0 x 10 ¹¹ n/cm ² -sec En < 0.4 ev

- Materials and Thickness
 - For Thrust Level ≥ 50,000 lbf
 - -- 12.5 Inches of Borated Aluminum Titanium Hydrid (BATH)
 - -- 1.3 Inches Lead
 - For Thrust Levels < 50,000 lbi, BATH and Lead Thickness Slightly Reduced Due to Lower Core Power Density

Scionco Applications Informational Corporation (W)

- Based On R-1 Engine Design
- 53 Reactor Regions Hemized
- Masses Adjusted With Changes in Core Size

MODELED REGIONS IN THE R-1 REACTOR

MATERIAL	REGION DESCRIPTION	NEGICH HUMBER
l'usted Element Univeled Elemen Pyre Steeve A-208 BS-304 Hydragen	Care	1 - 16
Graphilite-G Pyrololi ZrC (60% Dense TZM Moly Hydrogen	Core Pariphery	16
P03 Graphia ZTA Graphia Pyralal Hydrogen	Lateral Support	17
P03 Graphile Al-886 1 A-286 Hydrogen	Structure	10

W

Science Applications international Corporation

27

NON-NUCLEAR AUXILIARY COMPONENT WEIGHTS

- Updated Weight Correlations Incorporated for the Following Auxiliary Components:
 - Instrumentation
 - Pneumatic Supply System
 - Reactor Cooldown Assembly
 - Thrust Structure
- Based on Past Work by TRW (1965) Which Developed Detailed Weight Correlations for Such Components Based on Evolving NERVA Designs
 - Updated to Take into Account Advances in Technology and Design Practices

Science Applications international Corporation $(\underline{\underline{\mathbf{w}}})$

MAJOR NESS ENGINE SYSTEM ENGINEERING DESCRIPTION AREAS

- System Pressure, Temperature and Mass Flow Schedule
- Turbopump Design and Operation
- Nozzle Peformance Losses
- Regenitatively Cooled Nozzle Design
- Reactor Subsystem Design and Operation

W

TYPICAL ENGINE SYSTEM DESIGN SUMMARY

30a

In Addition to Normal Flight Design/Operating Conditions Presented Pump Our Operating and Launch Weight Parameters are Cive

680

NTP: Systems Modeling

 $(\underline{\mathbf{w}})$

SAMPLE DESIGN CASE SUMMARY

Case No./ Parameter	1	2	3	4	5	6	7	
Сусів Туре	Expender	Expander	Bleed	Gas Generator	Expander	Rined	Ges Generator	Expander
Thrust Level (Ib(/N)	75,000/ 333,600	75,000/ 333,600	75,000/ 333,600	75,000/ 333,600	75,000/ 333,600	35,000/ 155,700	250,000/ 1,112,000	75,000/ 333,600
Reactor Type	ENABLER I	ENABLER II	FNABLER II	ENABLER II	ENABLER II	ENABLER I	ENABLER I	ENABLER !
Reactor Puel Type	Composite	Composite	Composite	Composite	Carbide	Composite	Composite	Composite
Chamber Pressure (pain/KPn)	1,000/ 6,895	500/ 3,348	.500/ 3,348	500/ 3,348	1,000/ 6,895	500/ 3,348	500/ 3,348	1,000/ 6,895
Chamber Temperature (TV/K)	4,860/ 2,700	4,860/ 2,700	4,860/ 2,700	4,860/ 2,700	5,580/ 3,100	4,860/ 2,700	4,960/ 2,700	4,860/ 2,700
Nozzie Area Ratio	500:1	200:1	200:1	200: i	500:1	200:1	200:1	500:1
No. of Propellant Food Legs	. 2	2	2	2	2	1	3	2
Тиниримр Турс	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Axial	Coorifugal	Axial	Asial
Reactor Paci Scaling Factor	1.00	0.67	0.67	0.67	0.67	0,67	1.00	1.00

NESS VERSION 2.0 OPERATING ENVIRONMENT

32

- Well Organized Worksheet to Initialize Your Design Are Provided
- Uses Improved Name List Input File
 - Each Input Variable is Defined
- Operates on VMS/VAX System
 - Over 30,000 Lines of Code
- Personal Computer Compatible Version is Available
 - Requirements
 - 486-33 MHz Computer
 - 6 MB RAM
 - 80 MB Hard Drive
 - Leheay Fortran with Extended Memory Required

681 ³³

No. 206 678 Copy file	
Nuclear Engine System Simulation (NESS) Volume I Program User's Guide	CONTENTS Section Page 19 INTRODUCTION 11
Contract No. HAES-19809	10 ENCIME \$\state{\text{SYSTEM MODEL}}
December 1891	4 Institution (Comparison) 5 Manillary Comparison) 7 Tacking
Presented for MASA Lower Showshife Confer	1
Number Propert Oreas 31993 Breaklan Read Claureness Chi 11125	16 88A/COE EVITEA
Propered by Balance Applications bearingship Communian 21141 Wagton Annicka	1
5AJC	48 SAMPLE NTF ENGINE SYSTEM DESIGN CASE 41 38 MIGDEL YERRIFCATION/COMPARISON 51 48 CCINICALDERO REMARKS 41 76 ARPRAINCES 71
	APPENDIX A - NESS Input Workshores

NTP: Systems Modeling

682

NP-TTM-92

CYCLE PARAMETER COMPARISON* - 75,000 lbf, ENABLER I, Expander Cycle -

Parameter	Rockeldyne	SAIC - ELES NTP	SAIC NRSS
Total Flowrate (kg/s)	36.7	36.9	37.27
Pump Discharge Pres. (pala)	1,544	1,538.3	2,298.3
Turbine Flowrate, % Pump	50	50	50
Turbine Inlet Temp. (*K)	555.6	555.3	622.3
Turbine Inlet Pres. (psis)	1,412	1,416.8	1,969.0
Turbine Pressure Ratio	1.25	1.295	1.739
Reactor Inlet Pres. (psla)	1,130	1,255.4	1,132.1
Reactor Power, (MW)	1,645	-	1,587
Reactor Core Flowrate (kg/s)	36.7	36.9	36.2
Nozzle Chamber Temp (°K)	2,700	2,700	2,700
Nozzle Chamber Pres. (peia)	1,000	1,000	1,000
Nozzie Exit Diameter (m)	4.15	4.15	4.22
Nozzle Expension Ratio	500	500	500
Specific Impulse-Vac (sec)	923	922.8	912.9
Pump Speed (rpm)	37,500	34,913	40,583

Rockzidyne uses their Mark 25 type axial turbopump (4 stages); SAIC ELBS-NTP used a single-stage centrifugal pump; SAIC NBSS, Sample Case No. 8, uses a 5-stage axial pump

ENGINE SUBSYSTEM WEIGHT COMPARISON* - 75,000 lbf, ENABLER I, Expander Cycle -

Parameter	Rockeldyna	SAIC BLBS-NTP	SAIC NESS
Specific Impulse - Vac (sec)	923	922.8	912.9
Reactor (kg)	5,824	5,823	4,783
Internal Shield (kg)	_	1,523	1,108
Nozzie Assembly (kg)	440	421	535
Turbopump Assembly (kg)	304	104	221
Nonneclear Support Hardware (kg)	1,815	1,264	1,493
- Lines, Values, Actuators, Instrumen- tation Thrust Structure			

Rocketdyne sace their Mark 25 type axial turbopump (4 stages); SAIC ELES-NTP used a single-stage centrifugal pump; SAIC NESS, Sample Case No. 8, uses a 5-stage axial pump.

EFFECT OF WALL TEMPERATURE ON PERFORMANCE*

Wall Temperature (°R)	Barrier Temperature (*A)	isp (Sec.)	Fuel Film Cooling Fraction
1460	1630	912.9	0.03
1800	2106	915.9	0.03
2000	2429	917.5	0.02
2400	2892	919.4	0.02
2800	3418	921.2	0.02
3000	3651	921.9	0.02
3200	3864	922.4	0.02

^{*} Core Temperature = 4860*R (2700*k)

DESIGN CASE COMPARISION OBSERVATIONS

- NESS Design Exhibits 1% Lower Peformance Than Other Designs
 - NESS Model More Accurately Predicts Nozzle Cooling Losses-Upstream Film Cooling Required to Meet Maximum Wall Temperature Requirements
- Integrated Reactor/Engine System Design Effects Accounted for in the NESS Design
 - Sized to Take Into Account Heat Captured by the Coolant Before It Enters the Reactor
 - Corresponds to Some Difference in Cycle Pressures, Temperatures, and Turbopump Operating Parameters
- Other Weight Differences From Improvements in NESS Weight Correlations
 - 3-Section Nozzle Design
 - Non-Nuclear Auxiliary Components
 - Update H, Properties

CONCLUDING REMARKS

40

CONCLUDING REMARKS

- The NESS Preliminary (ENABLER I&II) Design Analysis Program Characterizes a Complete Near-Term Solid-Core NTP Engine System in Terms of Performance, Weight, Size, and Key Operating Parameters for the Overall System and Its Associated Subsystem
 - Incorporates Numerous State-of-the-Art Engine System Technology Design Options and Design Functions Unique to NTP Systems

 Extensively Verfied and Documented
- The NESS Program is Deemed Accurate to Support Future Preliminary Engine and Vehicle System Design and Mission Analysis Studies
 - NESS Has Been Successfully Operated and Checked Out at NASA Lewis
- Future Recommendations:
 - Incorporate Other NTP Reactor Types
 -- Particle Bed

 - -- Pellet Bed -- Low Pressure
 - -- Wire Core
- -- with Cole
 -- In situ Propellant Based Reactor Designs
 Incorporate a Radiative Heating Model
 Update the Material Library
 Upgrade the NESS Performance Prediction Module
 - NESS Devleopment Is One of Many Key First Steps Required to Support NTP Development It Is Envisioned that NESS Will Be One Key Element of an Advanced NTP Engine
 - - System Design Workstation

